- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources2
- Resource Type
-
0002000000000000
- More
- Availability
-
20
- Author / Contributor
- Filter by Author / Creator
-
-
Ozay, Necmiye (2)
-
Raz, Daphna (2)
-
Bolivar-Nieto, Edgar (1)
-
Gregg, Robert D. (1)
-
Umberger, Brian R. (1)
-
Yang, Liren (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
& Abramson, C. I. (0)
-
& Abreu-Ramos, E. D. (0)
-
& Adams, S.G. (0)
-
& Ahmed, K. (0)
-
& Ahmed, Khadija. (0)
-
& Aina, D.K. Jr. (0)
-
& Akcil-Okan, O. (0)
-
& Akuom, D. (0)
-
& Aleven, V. (0)
-
& Andrews-Larson, C. (0)
-
& Archibald, J. (0)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Falls during sit-to-stand are a common cause of injury. The ability to perform this movement with ease is itself correlated with a lower likelihood of falling. However, a rigorous mathematical understanding of stability during sit-to-stand does not currently exist, particularly in different environments and under different movement control strategies. Having the means to isolate the different factors contributing to instability during sit-to-stand could have great clinical utility, guiding the treatment of fall-prone individuals. In this work, we show that the region of stable human movement during sit-to-stand can be formulated as the backward reachable set of a controlled invariant target, even under state-dependent input constraints representing variability in the environment. This region represents the ‘best-case’ boundaries of stable sit-to-stand motion. We call this the stabilizable region and show that it can be easily computed using existing backward reachability tools. Using a dataset of humans performing sit-to-stand under perturbations, we also demonstrate that the controlled invariance and backward reachability approach is better able to differentiate between a true loss of stability versus a change in control strategy, as compared with other methods.more » « less
-
Raz, Daphna; Bolivar-Nieto, Edgar; Ozay, Necmiye; Gregg, Robert D. (, IEEE Conference on Control Technology and Applications)This paper presents a new model and phase-variable controller for sit-to-stand motion in above-knee amputees. The model captures the effect of work done by the sound side and residual limb on the prosthesis, while modeling only the prosthetic knee and ankle with a healthy hip joint that connects the thigh to the torso. The controller is parametrized by a biomechanical phase variable rather than time and is analyzed in simulation using the model. We show that this controller performs well with minimal tuning, under a range of realistic initial conditions and biological parameters such as height and body mass. The controller generates kinematic trajectories that are comparable to experimentally observed trajectories in non-amputees. Furthermore, the torques commanded by the controller are consistent with torque profiles and peak values of normative human sit-to-stand motion. Rise times measured in simulation and in non-amputee experiments are also similar. Finally, we compare the presented controller with a baseline proportional-derivative controller demonstrating the advantages of the phase-based design over a set-point based design.more » « less
An official website of the United States government

Full Text Available