skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Raz, Daphna"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Falls during sit-to-stand are a common cause of injury. The ability to perform this movement with ease is itself correlated with a lower likelihood of falling. However, a rigorous mathematical understanding of stability during sit-to-stand does not currently exist, particularly in different environments and under different movement control strategies. Having the means to isolate the different factors contributing to instability during sit-to-stand could have great clinical utility, guiding the treatment of fall-prone individuals. In this work, we show that the region of stable human movement during sit-to-stand can be formulated as the backward reachable set of a controlled invariant target, even under state-dependent input constraints representing variability in the environment. This region represents the ‘best-case’ boundaries of stable sit-to-stand motion. We call this the stabilizable region and show that it can be easily computed using existing backward reachability tools. Using a dataset of humans performing sit-to-stand under perturbations, we also demonstrate that the controlled invariance and backward reachability approach is better able to differentiate between a true loss of stability versus a change in control strategy, as compared with other methods. 
    more » « less
  2. This paper presents a new model and phase-variable controller for sit-to-stand motion in above-knee amputees. The model captures the effect of work done by the sound side and residual limb on the prosthesis, while modeling only the prosthetic knee and ankle with a healthy hip joint that connects the thigh to the torso. The controller is parametrized by a biomechanical phase variable rather than time and is analyzed in simulation using the model. We show that this controller performs well with minimal tuning, under a range of realistic initial conditions and biological parameters such as height and body mass. The controller generates kinematic trajectories that are comparable to experimentally observed trajectories in non-amputees. Furthermore, the torques commanded by the controller are consistent with torque profiles and peak values of normative human sit-to-stand motion. Rise times measured in simulation and in non-amputee experiments are also similar. Finally, we compare the presented controller with a baseline proportional-derivative controller demonstrating the advantages of the phase-based design over a set-point based design. 
    more » « less